
Information, Calcul et Communication

CS-119(k) ICC – Théorie
Semaine 2

Rafael Pires
rafael.pires@epfl.ch

Lausanne, 28.02.2025

mailto:rafael.pires@epfl.ch


Précédemment, dans ICC-T 01

2

Artificial
Intelligence

§ Les ingrédients de base des algorithmes
o Données (variables)

o Instructions (affectations, structures de contrôle)
§ Problèmes :

o Calcul du modulo 3 d’un grand nombre

o Recherche du minimum dans une liste
o Problème du voyageur du commerce

o Comparaison tous contre tous
o L’algorithme d’Euclide (pgdc)



Précédemment, dans ICC-T 01

3

Artificial
Intelligence

§ Les ingrédients de base des algorithmes
o Données (variables)

o Instructions (affectations, structures de contrôle)

Branchements Boucles

si delta < 0, alors …
sinon …

pour i allant de 1 à n, (répeter …)

tant que 𝑖 ≤ 10, (répeter …)



Précédemment, dans ICC-T 01

4

Artificial
Intelligence

Boucles

Itérations Boucles conditionnelles

itère sur une 
séquence définie à 
l'avance condition peut être 

n'importe quelle 
expression booléenne

pour i allant de 1 à 10, 
(répeter …)

i← 1
tant que 𝑖 ≤ 10

(répeter …)
i← i + 1



Attention !

5

Artificial
Intelligence

Boucles

Itération
Boucle 

conditionnelle
pour i allant de 1 à 10, 

(répeter …)
i← 1
tant que 𝑖 ≤ 10

(répeter …)
i← i + 1

≡

ICC-T : vendredi ≠ ICC-P : lundi

Artificial
Intelligence

Itération
for i in range(0,10): 

(répeter …)
i← 0
tant que 𝑖 < 10

(répeter …)
i← i + 1

≡

Boucle 
conditionnelle

Nombre de itérationspour i allant de 1 à n, 
(répeter …)

for i in range(0,n): 
(répeter …)

n – 1 + 1 = n n – 0 = n=

Indices et comparateur d’inégalité



Programme du cours

6

51 3 4 6 7 8 9 10 11 12 13 142

51 3 4 6 7 8 10 11 12 13 142

P

T

Cours et séries, partie programmation

Cours et séries, partie théorique

InformationCalcul Communication

Vous êtes ici



Annonces

7

51 3 4 6 7 8 9 10 11 12 13 142

51 3 4 6 7 8 10 11 12 13 142

P

T

Cours et séries, partie programmation

Cours et séries, partie théorique

14.03 ICC-T Changement de salle 
exceptionnel : CM14

31.03 ICC-P Cours par zoom (aussi diffusé en salle)
Séance d’exercices normale



Aujourd’hui

8

§ Sous-algorithmes

§ Complexité temporelle

§ Notation Grand Theta



Sous-algorithmes

9



Sous-algorithmes Sous-recettes

10

§ Préparer le pain → Peut être une sous-recette (faire du pain maison)

§ Couper les légumes → Une autre sous-recette

(utilisable pour une salade aussi)

§ Assembler le sandwich → Une tâche qui utilise les résultats des 

sous-recettes précédentes



Sous-algorithmes

11

…
x← algo1(5)
x← 10
x← algo2(5)
x← x + algo1(5)
…

Algorithme principal

entrée : …
sortie : …

…

algo1

entrée : nombre entier n
sortie : nombre entier

…

algo2

entrée : nombre entier n
sortie : nombre entier



Ilustration du principe avec le tri d’une liste

12

§ Comment trier une liste de nombres ?

§ Il existe de nombreuses façons de faire, plus ou moins efficaces. Nous 
allons en voir une : le tri par insertion, qui permet de bien illustrer le 
principe de l’utilisation de sous-algorithmes.



Ilustration du principe avec le tri d’une liste

13



Ilustration du principe avec le tri d’une liste

14

pas triée

ç

Pour i allant de 2 à n :
Si L(i) < L(i-1), alors

L ← permuter(L, i, i-1)
Sortir : L

Tri d’une liste – 1er essai

entrée : liste L de taille n
sortie : liste L triée dans l’ordre 
croissant



Tri par insertion : algorithme principal

15

Pour i allant de 2 à n :
Si L(i) < L(i-1), alors

L ← insérer(L, i)
Sortir : L

Tri par insertion

entrée : liste L de taille n
sortie : liste L triée dans l’ordre 
croissant

triée
i=4



Tri par insertion : sous-algorithme 1

16

Tant que i > 1 et L(i) < L(i-1) :
L ← permuter(L, i, i-1)
i ← i-1

Sortir : L

insérer

entrée : liste L, indice i
sortie : liste L avec l’élement L(i) 
bien placé

triée

§ Remarque importante :
o Les éléments L(1) … L(i-1) doivent être déjà triés pour que ce sous-algorithme 

fonctionne correctement. Hereusement, c’est le cas ici !



Tri par insertion : sous-algorithme 2

17

L(j) ← L(k)
L(k) ← L(j)
Sortir : L

permuter – 1er essai

entrée : liste L, indices j et k
sortie : liste L avec les éléments 
L(j) et L(k) permutés

temp ← L(j)
L(j) ← L(k)
L(k) ← temp
Sortir : L

permuter

entrée : liste L, indices j et k
sortie : liste L avec les éléments 
L(j) et L(k) permutés



Tri par insertion : algorithme entier

18

Pour i allant de 2 à n :
Si L(i) < L(i-1), alors

L ← insérer(L, i)
Sortir : L

Tri par insertion

entrée : liste L de taille n
sortie : liste L triée dans l’ordre 
croissant

Tant que i > 1 et L(i) < L(i-1) :
L ← permuter(L, i, i-1)
i ← i-1

Sortir : L

insérer

entrée : liste L, indice i
sortie : liste L avec l’élement L(i) 
bien placé

temp ← L(j)
L(j) ← L(k)
L(k) ← temp
Sortir : L

permuter

entrée : liste L, indices j et k
sortie : liste L avec les éléments 
L(j) et L(k) permutés



Aujourd’hui

19

§ Sous-algorithmes

§ Complexité temporelle

§ Notation Grand Theta

§ Sous-algorithmes

§ Complexité temporelle

§ Notation Grand Theta



Algorithmes : Complexité temporelle

20

§ La complexité temporelle d’un algorithme est son temps 
d’exécution.

§ Définition plus précise :
v La complexité temporelle d’un algorithme est le nombre 

d’opérations élémentaires effectuées au cours de son 
exécution, dans le pire des cas.

§ opération élémentaire : addition, soustraction, multiplication

ou comparaison

§ pire des cas : le temps d’exécution peut en effet dépendre      
des données d’entrée.



Complexité temporelle : Exemples

21

Tant que 1 > 0 :
Afficher “bonjour”

Algorithme 1

m← 0
Pour i allant de 1 à n :

m←m + L(i)
Sortir : m/n

Algorithme 2

entrée : liste L de taille n
sortie : moyenne des n nombres 
de la liste



ICC-T 01 : Tous différents ?

22

● Problème à résoudre :
§ Parmi une liste de n objets, identifier si 

ceux-ci sont tous différents les uns des 
autres.

s← oui
Pour i allant de 1 à n-1 :

Pour k allant de i+1 à n :
Si L(i) = L(k), alors :

Sortir non
Sortir : s

Tous différents

entrée : liste L de n objets
sortie : valeur binaire oui/non

i = 1: k = 2, 3, 4, …, n n-1 comp.
i = 2: k = 3, 4, …, n n-2 comp.
i = 3: k = 4, …, n n-3 comp.
⋮ ⋮ ⋮

i = n-2: k = n-1, n 2 comp.
i = n-1: k = n 1 comp.

1 + 2 + 3 + … + (n-2) + (n-1) = !(!#$)
&

comp.

i      k 1 2 3

1 1,1 1,2 1,3

2 2,1 2,2 2,3

3 3,1 3,2 3,3



Aujourd’hui

23

§ Sous-algorithmes

§ Complexité temporelle

§ Notation Grand Theta

§ Sous-algorithmes

§ Complexité temporelle

§ Notation Grand Theta



Notation 𝚯(#) : introduction

24

§ En général, on évalue la complexité temporelle d’un algorithme en fonction d’un paramètre 
lié à la taille des données d’entrée (le paramètre n dans les exemples précédents).  

§ Pourquoi tant s’intéresser à cette complexité temporelle ? Voici un exemple concret :  

v Supposons qu’un algorithme prenne une minute pour s’exécuter avec des 
données d’entrée de taille n = 1′000. On aimerait savoir en combien de 
temps (au pire) s’exécutera ce même algorithme avec des données 
d’entrée de taille n = 10′000.

§ Si on peut caractériser le nombre d’opérations effectuées par l’algorithme en fonction de n 
(comme par exemple pour l’algorithme « Tous différents » qui effectue !(!#$)

&
opérations 

lors de son exécution, dans le pire des cas, alors on peut répondre à la question ci-dessus.



Notation 𝚯(#) : définition

25

§ Dans de nombreuses applications, on a affaire à des données d’entrée de grande taille.

§ Dans ce cas, on aimerait obtenir des ordres de grandeur plutôt que de devoir faire des calculs 
détaillés.

Soient 𝑓, 𝑔 ∶ ℕ → ℝ' deux fonctions non-négatives
On dit que "𝑓(𝑛) est un grand theta de 𝑔(𝑛)" et on écrit "𝑓(𝑛) = Θ(𝑔(𝑛))" 
s'il existe 0 < 𝐶1 < 𝐶2 < ∞ et 𝑁 ≥ 1 tels que

𝐶1 𝑔 𝑛 ≤ 𝑓 𝑛 ≤ 𝐶2 𝑔 𝑛 pour tout 𝑛 ≥ 𝑁

Deux exemples : 
Les fonctions 𝑓(𝑛) = 𝑛 + 2 et 𝑓(𝑛) = 3𝑛 + 3 sont toutes deux des Θ 𝑛
La fonction 𝑓(𝑛) = ! !#$

&
+ 1 est un Θ(𝑛&)



Notation 𝚯(#) : application

26

§ Revenons à notre exemple :  

v Supposons qu’un algorithme prenne une minute pour s’exécuter 
avec des données d’entrée de taille n = 1′000. On aimerait savoir en 
combien de temps (au pire) s’exécutera ce même algorithme avec 
des données d’entrée de taille n = 10′000.

§ Si la complexité temporelle de cet algorithme est un 𝜣(𝑛) et il prend 1 minute avec 
une entrée de taille n=1’000, alors son temps d’exécution avec n=10′000 en entrée 
vaudra (approximativement) 10 minutes.

§ Si sa complexité temporelle est un 𝜣(𝒏𝟐), alors alors son temps d’exécution avec 
n=10′000 en entrée vaudra (approximativement) 10 × 10 = 100 minutes = 1 h 40 min.



Notation 𝚯(#) : Ordres de grandeur

27

100 101 102
10→17

1046

10109

10172

𝐿 (taille de l’entrée)

Co
ût

de
l’a
lg
or
ith

m
e

Comparaison des Complexités Algorithmiques

ω(1)
ω(log𝐿)
ω(𝐿)
ω(𝐿 log𝐿)
ω(𝐿2)
ω(2𝐿)
ω(𝐿!)

1

100 101 102

10→1

101

103

𝐿 (taille de l’entrée)

Co
ût

de
l’a
lg
or
ith

m
e

Comparaison des Complexités Algorithmiques

ω(1)
ω(log𝐿)
ω(𝐿)
ω(𝐿 log𝐿)
ω(𝐿2)

1

Impraticables : 𝜣(𝟐𝒏), 𝜣 𝒏!
Plus lents, mais souvent acceptés : 𝜣(𝒏𝟐) … 𝜣(𝒏𝒌), 𝜣 𝒏. 𝐥𝐨𝐠(𝒏)
Rapides: 𝜣(𝟏), 𝜣 𝐥𝐨𝐠 𝒏 ,𝜣 𝒏



ICC-T 01 : problème du voyageur de commerce

28

Lausanne

Genève

Bâle
Zürich

Lucerne

Bellinzone

5×4×3×2×1=120
𝒏!

Factoriale Résultat

1! 1

2! 2

3! 6

4! 24

5! 120

6! 720

7! 5040

8! 40320

9! 362880

10! 3628800

11! 39916800

12! 479001600

13! 6227020800

14! 87178297200

15! 1307674368000

16! 20922789888000

17! 355687428096000

18! 6402373705728000

19! 121645100408832000

20! 2432902008176640000

21! 51090942171709440000

22! 1124000727777607680000

23! 25852016738884976640000

24! 620448401733239439360000

25! 15511210043330985984000000

𝟐𝟔! ≈ 𝟒. 𝟎𝟑×𝟏𝟎𝟐𝟔



Notation 𝚯(#) : Illustration

29

s ←
𝑛 𝑛 − 1

2
Sortir : 𝑠

s ← 0
Pour 𝑖 allant de 1 à 𝑛 − 1 ∶

Pour 𝐣 allant de i + 1 à 𝑛 ∶
𝑠 ← 𝑠 + 1

Sortir : 𝑠

s ← 0
Pour 𝑖 allant de 1 à 𝑛 − 1 ∶
𝑠 ← 𝑠 + 𝑛 − 𝑖

Sortir : 𝑠

§ Calcul du nombre de paires d'éléments dans l'ensemble 
{	1,	2,	…,	n	}

§ Pour calculer ce nombre, il existe plusieurs façons de 
faire :
o Utilisation de deux boucles imbriquées

v Complexité 𝜣(𝒏𝟐)

o Utilisation d'une seule boucle
v Complexité 𝜣(𝒏)

o Utilisation de la formule mathématique
v Complexité 𝜣(𝟏)

i      k 1 2 3

1 1,1 1,2 1,3

2 2,1 2,2 2,3

3 3,1 3,2 3,3



Notation 𝚯(#) : Illustration

30

2 4 6 8 10
0

20

40

60

80

𝐿 (taille de l’entrée)

Co
ût

de
l’a
lg
or
ith

m
e

Comparaison des Complexités Algorithmiques

ω(1)
ω(𝐿)
ω(𝐿2)

1

§ Calcul du nombre de paires d'éléments dans l'ensemble 
{	1,	2,	…,	n	}

§ Pour calculer ce nombre, il existe plusieurs façons de 
faire :
o Utilisation de deux boucles imbriquées

v Complexité 𝜣(𝒏𝟐)

o Utilisation d'une seule boucle
v Complexité 𝜣(𝒏)

o Utilisation de la formule mathématique
v Complexité 𝜣(𝟏)



Deux font la paire

31

Question : Parmi toutes les fiches et prises ci-dessus, y a-t-il une paire qui s’adapte l’une à l’autre?



Réécriture du problème avec des nombres entiers

32

§ En remplaçant les fiches et les prises par des nombres entiers positifs et 
négatifs, respectivement, la question précédente se transforme en :

§ Etant donnée une liste 𝐿 de 𝑛 nombres entiers positifs et négatifs,
existe-t-il 𝑖, 𝑗 ∈ {1,… , 𝑛} tels que 𝑖 < 𝑗 et 𝐿(𝑖) + 𝐿(𝑗) = 0 ?

§ Exemple : 
o Si 𝐿 = (−15,−12,−3,−1,+5,+17,+23)

alors la réponse est non.
o Si 𝐿 = (−14,−3,−1,+3,+7,+10), 

alors la réponse est oui.

§ Note : Vu que nous avons affaire ici à des nombres entiers, nous allons 
supposer de plus que la liste 𝑳 en entrée est ordonnée.



Première méthode de résolution

33

§ Etant donnée une liste 𝐿 de 𝑛 nombres entiers positifs et négatifs,
existe-t-il 𝑖, 𝑗 ∈ {1,… , 𝑛} tels que 𝑖 < 𝑗 et 𝐿(𝑖) + 𝐿(𝑗) = 0 ?

Pour i allant de 1 à n-1 :
Pour k allant de i+1 à n :

Si L(i) = L(k), alors :
Sortir non

Sortir : oui

Tous différents

entrée : liste L de n objets
sortie : valeur binaire oui/non

Pour i allant de 1 à n-1 :
Pour k allant de i+1 à n :

Si L(i) + L(k) = 0, alors :
Sortir oui

Sortir : non

Deux font la paire

entrée : liste ordonnée L de nombres entiers
sortie : valeur binaire oui/non



Première méthode de résolution

34

§ Les deux boucles imbriquées explorent 
toutes les paires possibles d'indices 𝑖 < 𝑗
dans {1…𝑛}, qui sont au nombre de                                        

(𝑛 − 1) + (𝑛 − 2) +⋯+ 2 + 1 =
𝑛 𝑛 − 1

2

§ donc la complexité temporelle de l’algorithme 
est 𝜣(𝒏𝟐).

§ Question : Peut-on faire mieux ?

§ Remarque :
o L’algorithme précédent n’exploite pas l'ordre de la liste 𝐿.

Pour i allant de 1 à n-1 :
Pour k allant de i+1 à n :

Si L(i) + L(k) = 0, alors :
Sortir oui

Sortir : non

Deux font la paire – 1er essai

entrée : liste ordonnée L de nombres entiers
sortie : valeur binaire oui/non



Deuxième méthode de résolution

35

Deux font la paire

𝑖 ← 1
𝑗 ← 𝑛
Tant que 𝑖 < 𝑗 ∶

Si 𝐿(𝑖) + 𝐿(𝑗) = 0, alors ∶ Sortir ∶ 𝑜𝑢𝑖
Si 𝐿(𝑖) + 𝐿(𝑗) < 0, alors ∶ 𝑖 ← 𝑖 + 1
Si 𝐿(𝑖) + 𝐿(𝑗) > 0, alors ∶ 𝑗 ← 𝑗 − 1

Sortir ∶ 𝑛𝑜𝑛

entrée ∶ liste ordonnée L de n nombres entiers
sortie ∶ valeur binaire 𝑜𝑢𝑖 / 𝑛𝑜𝑛

§ Remarque :
o Complexité temporelle de ce dernier algorithme: Θ 𝑛 (une seule boucle !).

§ Etant donnée une liste 𝐿 de 𝑛 nombres entiers positifs et négatifs,
existe-t-il 𝑖, 𝑗 ∈ {1,… , 𝑛} tels que 𝑖 < 𝑗 et 𝐿(𝑖) + 𝐿(𝑗) = 0 ?

𝐿 = (−14,−3, −1, +3, +7, +10)
i=2 j=4



Aujourd’hui

36

§ Sous-algorithmes

§ Complexité temporelle

§ Notation Grand Theta Θ

§ Sous-algorithmes

§ Complexité temporelle

§ Notation Grand Theta



Résumé Cours 2 – ICC-T

37

§ Les sous-algorithmes permettent de décomposer un problème en sous-problèmes 
plus simples, favorisant ainsi l'abstraction, la réutilisation du code, une meilleure 
lisibilité et une maintenance facilitée des algorithmes.
o Tri par insertion

§ La notation Grand Theta permet de caractériser précisément l’ordre de complexité
d’un algorithme.

§ Pour un problème donné, il existe souvent plusieurs algorithmes de résolution 
différents.

§ En général, des données d'entrée structurées permettent une résolution plus efficace 
du problème.



rafael.pires@epfl.ch

Merci 38


