m

Rafael Pires
rafael.pires@epfl.ch

|
=

Information, Calcul et Communication

CS-119(k) ICC - Théorie
Semaine 2

Lausanne, 28.02.2025

mailto:rafael.pires@epfl.ch

Précédemment, dans ICC-T O1

S O @ k-

E&

M"\

N/ B E
Véi

éﬁ

\lq@

Les ingrédients de base des algorithmes

o Données (variables)

o Instructions (affectations, structures de controle)
Problemes:

o Calcul du modulo 3 d’'un grand nombre

o Recherche du minimum dans une liste

o Probleme du voyageur du commerce

o Comparaison tous contre tous

o L'algorithme d’Euclide (pgdc)

v
q
D
(@)
D
(o}
()]
3
3
()]
-
o+
(o}
(V)
=
()]
@
Q
—I
o
B

&/ & l% 8| = Lesingrédients de base des algorithmes

. aré / & @} O\i o Données (variables)

E is @ M = @QM o Instructions (affectations, structures de controle)
& . 9 \® Branchements/\ Boucles

Ei delta <0, alors J ‘ pour i allant de 1 a n, (répeter ZJ

sinon ... |
[Ent que i < 10, (répeter ...) $;

T T, B QI ltérations Boucles conditionnelles
fi(? = @3' pouriallantde 1 a 10, i1
. d =) \ = = (répeter ...) tantque i < 10
N e / S} X’ @ itére sur une (repeter....)
Y IXAFIL I oy el
%@a " i 1 = b % ‘J?\ séquence définie a
XK 4 6> o 8. | y I'avance condition peut étre
é @" \ f'\ n'importe quelle
& = 0 expression booléenne

Attention ! Boucles ™

\

Indices et comparateur d’inégalité

ICC-T : vendredi i ICC-P: lundi
Boucle Boucle
Itération conditionnelle Iteration conditionnelle
pouriallantde1a10, | _|i«<1 foriinrange(0,10): | — |i<0
(répeter...) ~ | tantque i < 10 (répeter...) tantquei < 10
(répeter ...) (répeter...)
pouriallantde 1 a n, Nombre de itérations for i in range(0,n):
(répeter...) (répeter...)
|
n-1+1=n — n-0=n .

EPFL

Programme du cours " . .
Vous étesici

ation

ez [sls] Lol elis]e
DODDOEEODEDEED

s et séries, partie théorique

\ S \o JW_J

Cours et séries, partie

' Communication
cpEL Calcul Information 6

Annonces 31.03 ICC-P Cours par zoom (aussi diffusé en salle)
Séance d’exercices normale

DEDOEBN
DEOEEDDEED

rtie théorique

Cours et séries, partie programmati

P
il >

Cours et séri

14.03 ICC-T Changement de salle
exceptionnel : CM14

=PrL !

Aujourd’hui

= Sous-algorithmes

= Complexité temporelle

= Notation Grand Theta

Sous-algorithmes

S

=PrL

Sous-algorithmes Sous-recettes

= Préparer le pain - Peut étre une sous-recette (faire du pain maison)

= Couper les légumes - Une autre sous-recette

(utilisable pour une salade aussi)

= Assembler le sandwich - Une tache qui utilise les résultats des

sous-recettes précedentes

10

m

-

Sous-algorithmes

Algorithme principal

entrée: ...
sortie: ...

x < algo1(5)
x<10

Xx < algo2(5)
x < x+ algo1(5)

entrée : nombre entier n
sortie: nombre entier

entrée : nombre entier n
sortie: nombre entier

11

m

llustration du principe avec le tri d’une liste

= Comment trier une liste de nombres ?

= |l existe de nombreuses facons de faire, plus ou moins efficaces. Nous
allons en voir une: le tri par insertion, qui permet de bien illustrer le

principe de l'utilisation de sous-algorithmes.

|
r

12

llustration du principe avec le tri d’une liste

SR
SeeRain
et
o
<X

o
=
/o7 SRR
IS
HE
s
oy e

/fff4f5/f7//9f1 N\
444442424%&&
(& S
« ®_%®
‘**“'I

13

Tri d’une liste — 1¢r essai

entrée: liste L de taille n
sortie: liste L triée dans I’ordre
croissant

m
"1

Pouriallantde2an:
Si L(i) <L(i-1), alors
L < permuter(L, i, i-1)

Sortir: L

Tri par insertion : algorithme principal

Tri par insertion

entrée: liste L de taille n
sortie: liste L triée dans I’ordre
croissant

LO o

Pouriallantde2an:
Si L(i) < L(i-1), alors
L < insérer(L, i)

Sortir: L

=PFL 15

m

o
11

Tri par insertion : sous-algorithme 1

insérer

entrée: liste L, indice 7
sortie: liste L avec I’élement L(i)
bien placé

Tantquei>1etL(i) <L(i-1):
L < permuter(L, i, i-1)
i i1

Sortir: L

Remarque importante :

(@)

Les éléments L(1) ... L(i-1) doivent étre déja triés pour que ce sous-algorithme
fonctionne correctement. Hereusement, c’est le cas ici !

16

m

o
11

Tri par insertion : sous-algorithme 2

permuter — 1¢" essai

entrée: liste L, indices jet k&
sortie: liste L avec les éléments
L(j) et L(k) permutés

L() < L(k)
L(k) < L(j)
Sortir: L

permuter

entrée: liste L, indices jet k&
sortie: liste L avec les éléments
L(j) et L(k) permutés

temp < L(j)
L(j) < L(k)
L(k) < temp
Sortir : L

S
&3 Q0RO
e
R
SR
e
S
&2

e
CSE0RRAR

S

17

m

-

Tri par insertion : algorithme entier

Tri par insertion insérer

permuter

entrée: liste L de taille n entrée: liste L, indice j entrée: liste L, indices jet k&
sortie: liste L triée dans I’ordre sortie: liste L avec I’élement L(i) sortie: liste L avec les éléments
croissant bien placé L(j) et L(k) permutés
Pouriallantde2an: Tantque i >1 et L(i) < L(i-1): te!rnp < L(j)
SiL(i) < L(i-1), alors L — permuter(L, i, i-1) L) < L(k)
L < insérer(L, i) o » L(k) « temp
Sortir : L i Sortir : L
o : Sortir: L :
3

18

Aujourd’hui

= Sous-algorithmes

= Complexité temporelle

= Notation Grand Theta

=PrL

19

Algorithmes : Complexité temporelle

= Lacomplexité temporelle d’un algorithme est son temps
d’exécution.

= Définition plus précise :
+ La complexité temporelle d’un algorithme est le nombre

d’opérations élémentaires effectuées au cours de son

0

‘z":fzifs‘: A exécution, dans le pire des cas.

= opération élémentaire : addition, soustraction, multiplication
Oou comparaison

= pire des cas : le temps d’exécution peut en effet dépendre

des données d’entrée.

20

m

-

Complexité temporelle : Exemples

Algorithme 1

Tantque1>0:
Afficher “bonjour”

Algorithme 2

entrée: liste L de taille n
sortie : moyenne des nnombres
de la liste

m<0
Pouriallantde1an:

m < m+ L(i)
Sortir : m/n

21

1 2 3

ICC-T 01 : Tous différents ? N

] o 1 1,1 1,2 1,3
e Probleme a résoudre :

= Parmi une liste de n objets, identifier si 2,1 2,2 2,3

W N
£
—
2
N

ceux-ci sont tous différents les uns des 3,3
autres.

Tous différents i=1: k=2,3,4,...,n n-1 comp.

i =2: k=3,4,...,n n-2 comp.

entrée: liste L de 1 objets i=3: k=4,..,n n-3 comp.
sortie : valeur binaire oui/non : : :

s < oui [: n-25 k f n-1, n 2 comp.
Pouriallantde 1 an-1: i =n-1: k=n 1 comp.

Pour k allantde i+1an:
Si L(i) = L(k), alors :
Sortir non n(n—1)
+2+3+ +(n-2) + (n-1) = ——~
Sortir : s 1+2+3+...+(n-2) + (n-1) = =—— comp.

m
hize]

T
r

22

Aujourd’hui

= Sous-algorithmes

= Complexité temporelle

= Notation Grand Theta

=PrL

23

Notation O(-) : introduction

= Engénéral, on évalue la complexité temporelle d’'un algorithme en fonction d’'un parameétre
lié a la taille des données d’entrée (le parametre n dans les exemples précédents).

= Pourquoi tant s’intéresser a cette complexité temporelle ? Voici un exemple concret :

% Supposons qu’un algorithme prenne une minute pour s’exécuter avec des
données d’entrée de taille n = 17000. On aimerait savoir en combien de
temps (au pire) s’exécutera ce méme algorithme avec des données
d’entrée de taille n =10'000.

= Sion peut caractériser le nombre d’opérations effectuées par I'algorithme en fonctionde n
(comme par exemple pour I'algorithme « Tous différents » qui effectue @ opérations

lors de son exécution, dans le pire des cas, alors on peut répondre a la question ci-dessus.

L 24

m
U
i

m

Notation O(-) : définition

Dans de nombreuses applications, on a affaire a des données d’entrée de grande taille.

Dans ce cas, on aimerait obtenir des ordres de grandeur plutét que de devoir faire des calculs
détaillés.

Soient f,g : N —» R, deux fonctions non-négatives
On dit que "f (n) est un grand theta de g(n)" et on écrit"f (n) = 0(g(n))"
silexiste 0 < C1 < (C2< o etN > 1telsque

Clgn) < f(n)<C2g(n) pourtoutn =N

Deux exemples:
Les fonctions f(n) =n+ 2 et f(n) = 3n + 3 sont toutes deux des 0(n)

n(n-1)

La fonction f(n) = =—— + 1 estun 0(n?)

|
r

25

Notation O(-) : application

= Revenons a notre exemple :

% Supposons qu’un algorithme prenne une minute pour s’exécuter
avec des données d’entrée de taille n = 1000. On aimerait savoir en
combien de temps (au pire) s’exécutera ce méme algorithme avec

des données d’entrée de taille n = 10'000.

= Silacomplexité temporelle de cet algorithme est un @ (1) et il prend 1 minute avec

une entrée de taille n=1000, alors son temps d’exécution avec n=10'000 en entrée
vaudra (approximativement) 10 minutes.

= Sisacomplexité temporelle est un & (nz), alors alors son temps d’exécution avec
n=10'000 en entrée vaudra (approximativement) 10 x 10 = 100 minutes =1h 40 min.

m
hize]

T
r

26

Notation O(:) : Ordres de grandeur

Comparaison des Complexités Algorithmiques Comparaison des Complexités Algorithmiques
]0172 11 T T 1 1 T T 1] T T 1 1 1]] T T 1] T T T T T T T T T T T T 1]
—0(1) —0(1)
Q — O(logn g — 6(l
Eoul e | B e e *
;60 —— O(nlogn) ;o"o —— O(nlogn)
= 0(n?) = ol 0(n?) |
< ot || o h <
:é' o(n!) b=t
e == 107! .
10—17 L1 I I I L L RN I L I I I N A I I [N B |
10° 10! 102 10° 10! 102
n (taille de Pentrée) n (taille de I'entrée)

Impraticables : @(2™), O(n!)
Plus lents, mais souvent acceptés : @(n?) ... @(n*), O(n.log(n))
Rapides: (1), @(logn), O(n)

ICC-T 01 : probleme du voyageur de commerce

$#J}ﬁ
5x4X3X2X1=120 Bale
' IR Iy A0 Zurich! =2 S\
n . /: > outmont, & s . ”'3‘292‘““))
26! ~ 4.03x10%% gt NI e
> A o ! / ° Glars , y f\\
,/v " Lucerne” . Sl J
. —t
~ {
/ Lausanne =
Vs
‘- . 4 E -
;\ ; 5 T) ot
: § A W D ek
Geneve, - L/j \> o & / {_\ Bme”Inz/pne R 5“1_})
"/‘ 8_3/ ’/>> \\\,\ < !/,
\}\ “ /rm{_xw\h)’) /'\ ‘ /l
A N

m
hize]

T
r

Factoriale
1
2
3
4
5
6
7
8
9
10
11!
12!
13!
14!
15!
16!
17!
18!
19!
20!
21!
22!
23!
24!
25!

Résultat

1

2

6

24

120

720

5040

40320

362880

3628800

39916800

479001600

6227020800

87178297200
1307674368000
20922789888000
355687428096000
6402373705728000
121645100408832000
2432902008176640000
51090942171709440000
1124000727777607680000
25852016738884976640000
620448401733239439360000
15511210043330985984000000

28

Notation O(-) : lllustration

= Calcul du nombre de paires d'éléments dans lI'ensemble
{1,2,.,n}

= Pour calculer ce nombre, il existe plusieurs facons de

faire :
o Utilisation de deux boucles imbriquées

% Complexité O (n?)

o Utilisation d'une seule boucle
< Complexité @ (n)

o Utilisation de la formule mathématique
< Complexité @ (1)

m

hize]
T

r

N 1 2 3

1 1,1 1,2 1,3
2 2,1 2,2 2,3
3 3,1 3,2 3,3

s<0
Pouriallantdelan—1:
Pourjallantdei+1an:
ss+ 1
Sortir: s

s<0

Pouriallantdelan—1:
S<s+n—i

Sortir: s

nn—1)
(_
2
Sortir : s

S

29

m

Notation O(-) : lllustration

Calcul du nombre de paires d'éléments dans I'ensemble
{1,2,.,n}

Pour calculer ce nombre, il existe plusieurs facons de

Comparaison des Complexités Algorithmiques

faire :
o Utilisation de deux boucles imbriquées 50| [—oq) |
o Y —0
% Complexité @ (n?) E ool e
o Utilisation d'une seule boucle B
< Complexité @ (n) g
0 [
o Utilisation de la formule mathématique 2 4 6 8
& CompIeXIté @ (1) n (taille de I'entrée)

|
r

Deux font la paire

Question : Parmi toutes les fiches et prises ci-dessus, y a-t-il une paire qui s’adapte I’'une a I'autre?

=PrL

m

Réécriture du probleme avec des nombres entiers

= Enremplacant les fiches et les prises par des nombres entiers positifs et
négatifs, respectivement, la question précédente se transforme en:

= Etant donnée une liste L de n nombres entiers positifs et négatifs,
existe-t-ili,j € {1, ...,n}telsquei <jetL(i))+ L(;j)=07

= Exemple:
o SiL=(-15,-12,-3,—1,+5,+17,+23)
alors la réponse est non.
o SiL=(-14,-3,—1,+3,+7,+10),
alors la réponse est oui.

= Note: Vu que nous avons affaire ici a des nombres entiers, nhous allons
supposer de plus que la liste L en entrée est ordonnée.

|
r

m

Premiere méthode de résolution

Etant donnée une liste L de n nombres entiers positifs et négatifs,
existe-t-ili,j € {1,...,n}telsquei <jetL(i)+ L(;j)=07

Tous différents

entrée: liste L de nobjets
sortie: valeur binaire oui/non

Pouriallantde 1 an-1:
Pour k allantdei+1an:
Si L(i) = L(k), alors :
Sortir non
Sortir : oui

)

Deux font la paire

entrée: liste ordonnée L de nombres entiers
sortie : valeur binaire oui/non

Pouriallantde 1 an-1:
Pourk allantde i+1an:
SiL(i) + L(k) =0, alors :
Sortir oui
Sortir : non

33

Premiere méthode de résolution

Deux font la baire — 16" essai = Les deux boucles imbriquées explorent
P toutes les paires possibles d'indices i < j

entrée: liste ordonnée L de nombres entiers dans {1..n}, qui sont au nombre de
sortie: valeur binaire oui/non
-1+ m-2)++2+1 =D
n —_— n —_— cee T e———
Pouriallantde1an-1: 2
Pour k allantdei+1 an:
SiL(i)+L(k)=0, alors : = donc la complexité temporelle de I'algorithme
- Sortir oui est O(n?).
Sortir : non

= Question : Peut-on faire mieux ?

= Remarque:
o L’algorithme précédent n'exploite pas l'ordre de la liste L.

34

m
hize]

T
r

m

Deuxieme méthode de résolution

= Etant donnée une liste L de n nombres entiers positifs et négatifs,
existe-t-ili,j € {1,...,n}telsquei <jetL(i)+ L(;j)=07

Deux font la paire

entrée: liste ordonnée L de /7nombres entiers
sortije: valeur binaire oui /non

i1
jen

Tantquei<j:
Si L(i)+ L(j) =0, alors : Sort @
SiL(i)+L(j)<O0,alors: i« i

SiL({)+L(j)>0,alors: j«<j—1
Sortir : non

= Remarque:

=2y =4

L =(—14,-3,—1,+3,+7, +10)

o Complexité temporelle de ce dernier algorithme: 6(n) (une seule boucle !).

35

Aujourd’hui

= Sous-algorithmes

= Complexité temporelle

= Notation Grand Theta

=PrL

36

m

Résumeé Cours 2 - ICC-T

Les sous-algorithmes permettent de décomposer un probleme en sous-problemes
plus simples, favorisant ainsi I'abstraction, la réutilisation du code, une meilleure
lisibilité et une maintenance facilitée des algorithmes.

o Triparinsertion

La notation Grand Theta permet de caractériser précisément I'ordre de complexité
d’un algorithme.

Pour un probleme donné, il existe souvent plusieurs algorithmes de résolution
différents.

En général, des données d'entrée structurées permettent une résolution plus efficace

du probléeme.

37

rafael.pires@epfl.ch

=Pi-L

